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Abstract

The buckling failure probability evaluation of laminated composite plates subjected to di�erent in-plane random

loads is investigated. The material properties, ®ber angles and layer thickness of the laminates are treated as base-line

random variables (BLRV). The statistics of buckling strengths of the laminates are determined by the buckling analysis

of the stochastic ®nite element method. The buckling failure probabilities of the laminates subjected to random loads

are obtained using the statistics of buckling strengths, the probability theories and the probability integration in the

load space. The feasibility and accuracy of the present approach are validated using the results obtained by the Monte-

Carlo method (MCM). Numerical examples are presented to demonstrate the feasibility and application of the de-

veloped procedure and to investigate e�ects of stochastic dependence between buckling strengths corresponding to

di�erent failure modes and between random loads on the reliability of the composite laminates. Ó 2000 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

In recent years, laminated composite materials have become important engineering materials for the
construction of automobile, mechanical, space and marine structures. The use of laminated composite
materials in designing these structures has resulted in a signi®cant increase in payload, weight reduction,
speed maneuverability and durability. In pursuing these achievements, the reliability design of laminated
composite structures has thus become an important subject of research. For instance, Sun and Yamada
(1978) and Cederbaum and Elishako� (1990) studied the failure probability of composite laminates with
random strength parameters subjected to in-plane loads. Cassenti (1984) studied the ®rst-ply failure
probability and failure location of laminated composite beams and plates on the basis of the Weibull
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weakest link hypothesis. Kam and Lin (1992), Lin et al. (1993) and Engelstad and Reddy (1993) studied the
reliability of linear or nonlinear laminated composite plates with random material properties subjected to
transverse loads. Gurvich and Pipes (1995) used a multi-step failure approach to study the failure prob-
ability of laminated composite beams subjected to bending. Boyer et al. (1997) used the FORM to study the
design of a composite structure for achieving a speci®ed reliability. Lin et al. (1998) presented a procedure
for reliability analysis of laminated composite plates with random material constants and uncertain
stacking sequences subject to the failure modes of buckling and/or ®rst-ply failure. Many di�erent failure
modes have been considered for the analysis of composite laminates in the literature. However, to the
authorÕs knowledge, it seems that apart from the reference by Lin et al. (1998), only the single failure mode
was considered in previous study.

The anisotropy of ®ber reinforced composites is often designed for some special loading conditions to
obtain high reliability, or other properties. On the contrary, anisotropy also brings about high sensitivities
to loading conditions. This leads to the necessity to take account of the uncertainties of loads and some
other design parameters in the reliability analysis. In many engineering applications, the structures may be
subjected to di�erent random loads and the corresponding failure modes may be di�erent as well. If the
loads are not applied simultaneously, there should be some stochastic correlation between the structural
strengths corresponding to di�erent failure modes. The e�ects of stochastic dependence between structural
strengths corresponding to di�erent failure modes and random loads on the reliability analysis of structures
may not be negligible. Thus, more e�orts are still needed and, in particular, the combined e�ects of un-
certainties in applied loads, material properties, ®ber orientations and plate thickness, on the reliability of
composite laminates, should be studied thoroughly if highly reliable composite structures are to be de-
signed. Further, the development of an e�cient procedure for reliability assessment of laminated composite
plates is still a goal to be striven for.

The objective of this study is to investigate the reliability of the random laminated composite plate with
the consideration of multiple buckling failure modes corresponding to di�erent random loads. The un-
certainties of composite laminates considered here are random material properties and uncertain stacking
sequences. The developed procedure for the reliability analysis is the conjunction of the buckling strength
statistics, probability theory, and the numerical integration in the load space. The statistics of buckling
strengths are determined by the stochastic ®nite element method. The correlation coe�cient of buckling
strengths between di�erent random loads is considered in the reliability analysis. Numerical examples are
presented to demonstrate the feasibility and applications of the proposed procedure and investigate e�ects
of stochastic dependence between structural strengths corresponding to di�erent failure modes and random
loads on reliability analysis. Results obtained from the Monte-Carlo method (MCM) are used to validate
the accuracy of the present procedure.

2. Uncertainties in composite laminates and external loading

As is well known, many uncertainties may exist during the process of, for example, measurement and
manufacture. A composite laminate is a stack of layers of ®ber-reinforced laminae. The ®ber-reinforced
laminae are made of ®bers and matrix that are of two di�erent materials. The way in which the ®bers and
matrix materials are assembled to make a lamina, as well as the lay-up and curing of laminae, are com-
plicated processes and may involve a lot of uncertain factors. Therefore, the material properties of a
composite laminate are random in nature. In the following stochastic buckling analysis (SBA), the elastic
moduli �E1; E2; m12; G12; G13; G23� of the material are treated as independent base-line random variables
(BLRV), and their statistics are used to predict the mechanical behavior of composite laminates. It is worth
noting that as the determination of the degree of dependence among the BLRV is a di�cult though not
intractable task, the adoption of the independence assumption can greatly simplify the reliability assess-
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ment. In fact, the results obtained from the following reliability assessment will show that the independence
assumption is acceptable. Further, ®ber orientations and thickness of laminae may ¯uctuate in the vicinity
of the prescribed values, depending on the manufacturing process. It is, therefore, necessary and desirable
to investigate the e�ects of the uncertain stacking sequence on the reliability of composite laminates.
Herein, the ®ber orientation, hi, and the thickness, ti, of each layer are also considered to be random. The
uncertainties of the stacking sequence can be expressed in the following forms (Nakagiri et al., 1986):

hi � hi�1� xi� �1a�

ti � ti�1� gi� i � 1; 2; . . . ;N ; �1b�
where xi and gi stand for random variables for hi and ti, respectively; hi and ti are the mean values of the
variables hi and ti, respectively; N is the number of layers. It is noted that an uncertain layer thickness can
cause uncertainty in the Z coordinates of the layer boundary and centroid.

From now on, ai�i � 1; 2; . . . ; 2N � 6� will be used to denote the BLRV in which ai�i � 1; 2; . . . ;N�
denote the ®ber orientations, ai�i � N � 1; . . . ; 2N� layer thicknesses, and ai�i � 2N � 1; . . . ; 2N � 6� the
material properties E1, E2, m12, G12, G13 and G23, respectively. The aforementioned uncertainties in me-
chanical properties and stacking sequence of composite laminae can cause variations in the constitutive
matrix of the laminate.

In many engineering applications, the structures may be subjected to di�erent types of external loads,
which may not be applied simultaneously. In general, the magnitudes of the external loads are random in
nature. The uncertainties in external loads may have e�ects on the laminate reliability. For simplicity, here
only the in-plane external loads are considered for buckling analysis, and the external loads are assumed to
be proportional to one loading parameter k. Thus, in the following reliability analysis, the loading pa-
rameters for the di�erent types of external loads may be regarded as the magnitudes of the corresponding
external loads and treated as random variables.

3. Stochastic ®nite element buckling analysis of composite plates

The present stochastic ®nite element buckling analysis of laminated composite plates comprising random
parameters is based on the ®rst-order shear deformation theory and the mean-centered second-order
perturbation technique. Spatial variability is not considered in the stochastic ®nite element formulation.
The shear deformable ®nite element developed by Kam and Chang (1992) is used in the ®nite element
analysis. The element can be applied to the analyses of both thin and thick plates, and it contains ®ve
degrees-of-freedom (three displacements and two slopes, i.e., shear rotation) per node. In evaluating the
terms of element sti�ness matrix, a quadratic element of the serendipity family and the reduced integration
are used. Here, only the in-plane edge external loads are considered. The external loading is assumed to be
proportional to one random loading parameter k, and the e�ect of the prebuckling displacements is as-
sumed to be negligible. Thus, the buckling analysis considered here is the linear buckling analysis, and the
buckling loading parameter B may be determined by solving the eigenvalue problem

KbD � kKgD; �2�
where Kb is the linear sti�ness matrix of the structure, Kg is the geometric sti�ness matrix of the structure
corresponding to k � 1, and D is the eigenvector (buckling mode). The buckling loading parameter B is the
minimum eigenvalue of Eq. (2). In this study, B is referred to as the buckling strength of the laminate. The
buckling mode D, sti�ness matrices Kb and Kg and buckling loading parameter B in Eq. (2) are functions of
the random variables ai�i � 1; 2; . . . ; 2N � 6�, which represent structural uncertainties in the structure. In
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this study, ����0� denotes the value of ��� calculated at ak�k � 1; 2; . . . ;m�, in which ak is the mean of ak, and
m � 2N � 6; ����1�;i denotes the values of the ®rst-order derivatives of ��� with respect to random variables ai

calculated at ak; and ����2�;ij denotes the values of second-order derivatives of ��� with respect to random
variables ai and aj calculated at ak. Based on the mean-centered second-order perturbation technique, the
second-order approximate mean and ®rst-order approximate variance of the buckling strength may be
expressed as:

E�B� � B�0� � 1

2

Xm

i�1

Xm

j�1

B�2�;ij cov �ai; aj�; �3�

var �B� �
Xm

i�1

Xm

j�1

B�1�;i B�1�;j cov �ai; aj�: �4�

Here, B�0� is obtained from Eq. (2) by the inverse power method; B�1�;i and B�2�;ij are calculated by using the
method proposed in Lin and Kam (1992) and Rudisill (1974), and may be expressed as

B�1�;i �
D�0�

t�K�1�b;i ÿ B�0�K�1�g;i �D�0�
D�0�

t
K�0�g D�0�

; �5�

B�2�;ij �
H

D�0�
t
K�0�g D�0�

�6a�

in which

H � D�0�
t�K�2�b;ij ÿ B�0�K�2�g;ij ÿ B�1�;j K�1�g;i ÿ B�1�;i K�1�g;j �D�0� � D�0�

t�K�1�g;i ÿ B�0�K�1�g;i ÿ B�1�;i K�0�g �D�1�;j

� D�0�
t�K�1�b;j ÿ B�0�K�1�g;j ÿ B�1�;j K�0�g �D�1�;i : �6b�

Using the derivative of Eq. (2) and the derivative of the orthonormalized constraint DtD � 1 with respect
to ai, the value of D�1�;i in Eq. (6b) may be calculated by

CD
�1�
;i � ÿED�0�; �7a�

where

C � K
�0�
b ÿ k�0�K�0�g D�0�

h i K
�0�
b ÿ k�0�K�0�g

D�0�
t

" #
; �7b�

E � K�0�b ÿ k�0�K�0�g D�0�
h i K�1�b;i ÿ k�1�;i K�0�g ÿ k�0�K�0�g;i

0

24 35 �7c�

in which C and E are n� n matrices, and 0 is a zero matrix of order 1� n, in which n is the order of the
square matrices Kb and Kg.

When the BLRV are stochastically independent, cov �ai; aj� � 0, i 6� j, and cov �ai; aj� � var �ai�, i � j.
Thus Eqs. (3) and (4) may be rewritten as

E�B� � B�0� � 1

2

Xm

i�1

B�2�;ii var �ai�; �8�

var �B� �
Xm

i�1

�B�1�;i �2 var �ai�: �9�
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4. Reliability analysis

Consider the laminated plate subjected to di�erent in-plane loads referred to as load I and load II, which
are not applied simultaneously. Let kI and kII denote the loading parameters corresponding to load I and
load II, respectively. In view of Eq. (2), BI and BII are functions of the same base-line system parameters.
Thus, the stochastic dependence between BI and BII should be considered in the reliability analysis. The
correlation between BI and BII may be estimated from the covariance of BI and BII:

cov �BI;BII� �
Xm

i�1

Xm

j�1

B�1�
I;i

B�1�
II;j

cov �ai; aj�; �10�

where cov ��� denotes covariance, B�1�
I;i and B�1�

II;j can be determined in the previous section. The coe�cient of
correlation for BI and BII is thus obtained as

qB �
cov �BI;BII�

DBI
DBII

; �11�

where D denotes standard deviation.
The reliability assessment of a composite structure, in general, requires information on the probability

distribution and not just statistical moments of the buckling strength of the structure. In the previous
section, however, only statistical moments of buckling strength could be determined, while the types of
probability distributions of the buckling strengths are indeterminate. Without loss of generality, here both
the probability density functions of BI and BII are assumed to be lognormal distribution and denoted by
fBI
�u� and fBII

�v�.
In the linear buckling analysis, the limiting state of buckling failure is attained when the buckling

strengths are less than the magnitude of the corresponding load. Let n and g denote some values of loading
parameters kI and kII corresponding to loads I and II. The failure probabilities of the laminate subjected to
buckling failure corresponding to n and g, respectively, are de®ned as

Pd �C1� � Prob �laminate fails due to load I� �
Z n

0

fBI
u� �du; �12�

Pd �C2� � Prob �laminate fails due to load II� �
Z g

0

fBII
u� �du: �13�

The reliability of the laminate subjected to two buckling failures corresponding to n and g is thus expressed
as

PdS � 1ÿ Pdf � 1ÿ fPd C1� � � Pd C2� � ÿ Pd C1 \ C2� �g; �14�
where PdS � PdS�n; g� and Pdf � Pdf �n; g� are the reliability and failure probability of the laminate corre-
sponding to n and g. The joint probability in Eq. (14) is expressed as

Pd C1 \ C2� � � 1

2p
�������������
1ÿ q2

B

q Z x

ÿ1

Z y

ÿ1
exp

"
ÿ u2 ÿ 2qB uv� v2

2�1ÿ q2
B�

#
du dv �15a�

with

x � ln nÿ E� ln BI�
D ln BI

; y � ln gÿ E ln BII� �
D ln BII

: �15b�

The probability given in Eq. (15) can be calculated using the series expansion (Abramowitz and Stegun,
1967) and given by
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P C1 \ C2� � � Q�x�Q�y� �
X1
n�0

Z�n��x�Z�n��y�
�n� 1�! qn�1

B �16a�

with

Q�x� � 1������
2p
p

Z x

ÿ1
eÿt2=2 dt; �16b�

Z�x� � 1������
2p
p eÿx2=2: �16c�

From Eqs. (12) and (13), the failure probabilities of the laminate subjected to either random load I and
load II, respectively, can be expressed by

Pr�C1� �
Z 1

0

fkI
n� �Pd �C1�dn; �17�

Pr�C2� �
Z 1

0

fkII
g� �Pd �C2�dg; �18�

where fkI
n� � and fkII

g� � are the probability density functions of the random loading parameters kI and kII.
The failure probability of the laminate subject to two buckling failures corresponding to random loads I

and II can be expressed by

Prf �
Z 1

0

Z 1

0

fkIkII
�n; g�Pdf �n; g�dndg; �19�

where Pdf �n; g� is given in Eq. (14); fkIkII
�n; g� is the joint probability density of random loading parameters

kI and kII. In this study, both kI and kII are assumed to be normal variates and the corresponding joint
probability density function can be written as

fkIkII
n; g� � � 1

2pDkI
DkII

�������������
1ÿ q2

k

q exp
ÿ1

2�1ÿ q2
k
�

nÿ kI

DkI

� �2
("

ÿ 2q
k

nÿ kI

DkI

� �
gÿ kII

DkII

� �
� gÿ kII

DkII

� �2
)#

; �20�

where ki and Dki (i� I, II) denote the mean values and standard deviations of the random loading pa-
rameters ki corresponding to load i; q

k
denotes the correlation coe�cient for kI and kII.

The probability of Eqs. (17)±(19) can be evaluated by the numerical integration. The Monte-Carlo
simulation using the random multivariate numbers generated by the routine RNMVN of IMSL (1989)
mathematical package will be employed to verify the accuracy of the present reliability assessment of the
random laminated plate subjected to random loads.

5. Experimental investigation

The statistics of material properties and lamina thickness required for the present analytical method were
obtained from experimental measurements and testing. The material used in the present study was graphite/
epoxy (Q-1115) prepreg tapes supplied by the Toho Co., Japan. A number of 30 ´ 30 cm2 composite
laminates were made using the vacuum bag molding method in which the vacuum bagged laminate was
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cured by a hot press machine. Each cured laminate was then cut to make di�erent types of specimens used
for material characterization. The material properties were determined from experiments conducted in
accordance with the relevant ASTM standards (1990). The statistics of each lamina material parameter was
determined from a set of 17 specimens which were prepared from 17 di�erent laminates. Thicknesses of
di�erent laminated plates were measured and the results used to determine the statistics of plate thickness as
well as those of lamina thickness. The experimentally determined statistics of material properties and
lamina thickness as well as the con®dence intervals for their means with 95% con®dence level are tabulated
in Table 1. Spatial variabilities of the BLRV within a laminated plate were also studied experimentally.
Thicknesses at di�erent locations on a laminate were measured and same specimens cut from a laminate
were used to determine each of the lamina parameters. The experimental results showed that the spatial
variabilities of the BLRV within a laminate were insigni®cant (coe�cient of variation (COV) less than 1%).

A number of [0°/90°/0°/90°]2S square laminates of size 10 ´ 10 cm2 were subjected to axial buckling tests
using a 10-ton Instron testing machine. The top and bottom edges of the laminates were clamped during the
test. Herein, around 20 specimens were tested. The test results were ®tted by normal, lognormal or Weibull
distribution distributions as shown in Fig. 1. The statistics of the buckling loads, the con®dence intervals
for the mean buckling loads with 95% con®dence level, and the chi-squared test statistics determined from
the goodness-of-®t tests of di�erent expected distributions of the buckling loads for the laminated com-
posite plates are listed in Table 2. Both the con®dence intervals for the means and the variations (COV less
than 6%) of the buckling loads of the laminated plates are small. When comparing the chi-squared test
statistics listed in Table 2, it is obvious that the normal and lognormal models are the better representation

Table 1

Statistics of base-line random variables

Random variables 95% Con®dence interval for mean COV (%)

E1 138:41� 3:38 Gpa 3.60

E2 9:24� 0:27 GPa 4.34

G12 4:52� 0:17 GPa 5.51

G13 4:52� 0:17 GPa 5.51

G23 1:02� 0:04 GPa 5.51

m12 0:32� 0:01 5.90

ti 0:120� 0:001 mm 1.49

Fig. 1. The cumulative probability of the buckling test data ®tted by normal, lognormal, and Weibull distribution.
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of the sample data for the plates, because they yield the smaller value of the test statistic. The parameters of
the experimental distributions of the buckling loads of the laminated composite plates were determined
from the sample data using the maximum likelihood method (Neter et al., 1988).

6. Numerical studies

In this article, the standard deviation of the ®ber angles is assumed to be three degree. The BLRV
considered here are: material properties, layer thickness and ®ber angles of layers. Unless otherwise stated,
the statistics of BLRV given in Table 1 are used for numerical studies.

To verify the accuracy of the present SBA, the ®rst example considered is the laminated plate studied
experimentally in the previous section. The boundary conditions and the applied load are shown in Fig. 2(a).
A 4� 4 element mesh is used for discretization. The theoretical statistics of the buckling load corresponding
to di�erent BLRV are given in Table 3. The mean values given in Table 3 are the second order approxi-
mations of the mean value of buckling load. The corresponding ®rst order approximation of the mean value
of buckling load is 14.21 kN. It is noted that the discrepancy between the mean value of buckling loads
corresponding to the ®rst and second approximation is small (<0.9%). It can be seen that the e�ect of the
random ®ber angles on the variation of buckling load is insigni®cant for this example. When comparing the
results given in Table 3 with those given in Table 2, one can see that the agreement between the statistics of
buckling load obtained from the present numerical study and experimental study is very good.

The second example considered here is a size 10 ´ 10 cm2 of symmetric angle-ply laminate �h=ÿ h�S
shown in Fig. 2(b). The laminate is subjected to two in-plane loads: (1) a uniform compressive line load

Fig. 2. The geometry, boundary and loading conditions of the laminates.

Table 2

Experimental statistics of buckling load for composite plates [0°/90°/0°/90°]2S

Statistics Chi-squared test statisticsa

Mean (kN) COV (%) Normal Lognormal Weibull

13:24� 0:36b 5.57 15.5 14.9 19.7

a For k� 6, m� 2, and the a risk at 0.005, v2�1ÿ a; k ÿ mÿ 1�� 12.8 (Neter et al., 1988).
b 95% Con®dence intervals for mean.
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0:1kI N/cm in the X-direction, referred to as load I, (2) a uniform compressive line load 0:1kII N/cm in the
Y-direction, referred to as load II. Note again that load I and II are not applied simultaneously here. Here kI

and kII are assumed to be normal variates.
First, the e�ects of di�erent BLRV on the statistics of buckling strength of the laminate are investigated.

Figs. 3±5 show the statistics of the laminate buckling strength, which are obtained by using the present SBA
and MCM. It is noted that the results obtained by the present SBA are in excellent agreement with those
obtained by the MCM in which over 1000 data have been generated for each case. Fig. 3 shows the COV

Fig. 3. E�ect of di�erent BLRV on the variations of buckling strengths for the laminates �h=ÿ h�S.

Fig. 4. The correlation coe�cients of buckling strengths versus the ®ber angle of the laminate �h=ÿ h�S with di�erent base-line random

parameters.

Table 3

Theoretical statistics of buckling load for the [0°/90°/0°/90°]2S composite plate with various types of base-line random variables

Random variables Mean (kN) COV (%)

Materials 14.199 2.92

Lamina thicknesses 14.298 4.33

Fiber angles 14.072 <0.001

Combination 14.150 (6.87%)a 5.43 (6.3%)a

a Percentage error� ((SFEMÿ experiment)/experiment) ´ 100.
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for the buckling strength BI of the laminate with di�erent BLRV. As can seen from Fig. 3, among di�erent
BLRV, the randomness of layer thickness has greater e�ects on the variation of the laminate buckling
strength. Fig. 4 shows the correlation coe�cient of qB between buckling strengths BI and BII. It can be seen
that the stochastic dependence between BI and BII corresponding to random ply thickness is strong positive
for all ®ber angles. The stochastic dependence between BI and BII corresponding to random ®ber angle is
positive for ®ber angle h6 50°, and is negative for ®ber angle 50° < h < 90°. Fig. 5 shows the mean values
and the one-standard-deviation bounds of the buckling strength of the laminate with all BLRV corre-
sponding load I and load II. It can be seen that the values of BII monotonically increase with the increase of
the ®ber angle, and the value of BI increases when h6 60° and then decreases with the increase of ®ber
angle h.

Next, the reliability of the laminate corresponding to one and two buckling failure modes are studied.
Tables 4 and 5 show the reliability of the laminate with all BLRV subjected to load I and load II. It should
be noted that the results given in Table 4 are corresponding to values of loading parameters kI and kII given
in it. In other words, load I and load II are regarded as deterministic loads for this case. The de®nitions of
Pdf , Pd �C1� and Pd �C2� are given in Eqs. (12)±(14). Table 5 shows the reliability of the laminates subjected to
stochastic independent random loads with di�erent mean values of loading parameters, kI and kII. The
COV of loading parameters, kI and kII is assumed to be 10%. It can be seen that the reliability of the
laminate corresponding to two buckling failure modes is lower than those corresponding to one buckling
failure mode. The percentage di�erence between the results of the present method and MCM are given in

Table 4

The reliabilities of the laminates subjected to given values of loading parameters

Laminates �kI; kII� Method 1ÿ Pdf 1ÿ Pd �C1� 1ÿ Pd �C2�
[20°/)20°]S (300 N, 250 N) Present 0.983 (0.4%)a 0.993 (0.4%) 0.983 (0.4%)

MCM 0.979 0.997 0.979

[40°/)40°]S (420 N, 380 N) Present 0.962 (0.6%) 0.968 (0.6%) 0.962 (0.6%)

MCM 0.968 0.974 0.968

[60°/)60°]S (450 N, 450 N) Present 0.976 (0.4%) 0.976 (0.4%) 0.990 (0.3%)

MCM 0.981 0.981 0.993

[80°/)80°]S (300 N, 500 N) Present 0.982 (0.5%) 0.983 (0.5%) 0.990 (0.4%)

MCM 0.986 0.988 0.994

a Percentage error� ((presentÿMCM)/present) ´ 100.

Fig. 5. The mean values and one-standard-deviation bounds of buckling strengths for the laminate subjected to load I or load II.
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parentheses in Tables 4 and 5. It is noted that the results obtained by the present method are in excellent
agreement with those obtained by the MCM in which over 5000 data have been generated for each case.

Next, let us consider the e�ects of the variations of the stochastic independent random loads and BLRV
on the reliability of the laminates. The mean values of kI and kII used here are all 450 N. Fig. 6 shows the
reliability of a [60°/)60°]S laminate with di�erent BLRV versus COV of two stochastic independent random
loads. It can be seen that when the COV of kI and kII is greater than 20%, the discrepancy among the
reliabilities of the laminate corresponding to di�erent BLRV are negligible. It seems that when the variation
of the random loads is higher than a certain value, the reliability of the laminate may be dominated by the
values of the COV of random loads, and may be irrelevant to the type of BLRV. Fig. 7 shows the reliability
of a [60°/)60°]S laminate with di�erent COV of all BLRV versus COV of two stochastic independent
random loads. The mean values of BLRV used here are given in Table 1, and the COV of all BLRV
considered here are 0%, 5%, 10%, and 15%, respectively. It can be seen that the reliability of the laminate
decreases with the increase of the COV of BLRV and loading parameters when the COV of kI and kII is less
than 20%. It is noted that the reliability level of the laminate is less than about 0.5, and the reliability of the
laminate corresponding to COV of BLRV� 15% is higher than that corresponding to COV of
BLRV� 10%, when the COV of kI and kII is greater than 20%. However, the discrepancy between the
reliability corresponding to di�erent values of COV of BLRV is small, when COV of kI and kII is greater
than 20%. This observation is consistent with that for Fig. 6. From the results presented in Figs. 6 and 7,

Fig. 6. The reliability versus variations of the stochastic independent random loading parameters for the [60°/)60°]S laminate com-

posed of di�erent BLRV.

Table 5

The reliability of the laminates subjected to stochastically independent random loads

Laminates �kI; kII� Method 1ÿ Prf 1ÿ Pr�C1� 1ÿ Pr�C2�
[20°/)20°]S (300 N, 250 N) Present 0.767 (0.8%)a 0.897 (1.3%) 0.845 (1.8%)

MCM 0.773 0.909 0.838

[40°/)40°]S (420 N, 380 N) Present 0.683 (0.1%) 0.828 (0.6%) 0.804 (0.1%)

MCM 0.684 0.833 0.803

[60°/)60°]S (450 N, 450 N) Present 0.749 (0.1%) 0.835 (0.1%) 0.882 (0.1%)

MCM 0.748 0.836 0.880

[80°/)80°]S (300 N, 500 N) Present 0.772 (0.5%) 0.856 (0.7%) 0.890 (0.3%)

MCM 0.776 0.862 0.887

a Percentage error� ((presentÿMCM)/present) ´ 100.
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one may conclude that when the COV of the stochastically independent random loads and BLRV are all
small, the reliabilities of the laminates are dominated by the values of the COV of BLVR. Therefore, all
random variables including those of BLRV and random loads have to be considered into the corresponding
reliability assessment if highly reliable composite structures are to be designed. But when the variation of
the stochastic independent random loads is higher than a certain level (around 20% studied in Figs. 6 and
7), the reliability of the laminate is dominated by the values of the COV of random loading parameters, and
may be irrelevant to the types of BLRV and values of the COV of BLRV. According to the above studies,
when the variation of the stochastic independent random loads is higher than a certain level, the corre-
sponding reliability can be estimated with a reasonable accuracy by considering only the e�ects of random
loads.

Finally, the e�ects of the correlation coe�cients of the stochastically dependent random loads on the
reliability of the laminates are studied. The mean values and COV of kI and kII used here are all 450 N and
10%, respectively. Fig. 8 shows the reliability of a [60°/)60°]S laminate with di�erent BLRV versus cor-
relation coe�cients of kI and kII. Fig. 9 shows the reliability of the laminate with all BLRV versus the ®ber

Fig. 8. The reliability versus correlation coe�cients of random loading parameters for the [60°/)60°]S laminate composed of di�erent

base-line random parameters.

Fig. 7. The reliability versus variations of the stochastic independent random loading parameters for the [60°/)60°]S laminate com-

posed of all BLRV.
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angles. As can be seen from Figs. 8 and 9, the reliability of the laminate corresponding to positively cor-
related random loads are higher than those of negatively correlated random loads.

7. Conclusions

The reliability of composite laminates with single or multiple buckling failure modes has been investi-
gated on the basis of the buckling analysis of stochastic ®nite element method. The accuracy of the SBA in
predicting statistics of buckling strengths has been veri®ed by the experimental results and the MCM. The
applications of the proposed procedure have been demonstrated by the reliability predictions of symmetric
angle-ply laminates with di�erent types of buckling failure modes corresponding to di�erent in-plane edge
random loads which are not applied simultaneously. It has been shown that the variations of ply thickness
have the greatest e�ects on the variations of the laminate buckling strengths as well as laminate reliability.
Thus, tight control on ply thickness variations may be essential for achieving high reliability. Moreover, the
e�ect of the correlation between random loads has also been investigated and the reliability of the laminates
increases with the increase of the correlation coe�cients of random loads. From the accuracy of the present
results, it is believed that the developed procedure may be valuable for the reliability analysis of composite
laminates.
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